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Three simple computational techniques are proposed and employed to demonstrate the effect of
fluctuating flow rate of feed on the behaviour and performance of an isothermal, continuous stirred
tank reactor (CSTR). A fluidized bed reactor (FBR), in which a non-catalytic gas–solid reaction
occurs, is also considered. The influence of amplitude and frequency of gas flow rate fluctuations on
reactant concentrations at the exit of the CSTR is shown in four different situations.
Key words: Chemical reactor performance; Fluctuations of input flow rate; Continuous stirred tank
reactor; Fluidized bed reactor.

It has been known for two or three decades that intentional unsteady operation of
chemical reactors can be superior to the conventional steady-state regime. The advan-
tages sometimes provided by forced process cycling include increased conversion, en-
hanced selectivity and reduced parameter sensitivity (e.g., refs1–13).

In contrast to the above-mentioned forced cycling, fluidized bed reactors exhibit
spontaneous oscillations, e.g., in terms of flow rate of gas. The pressure/flow rate fluc-
tuations are closely interrelated with the formation and motion of local inhomogeneities
(gas bubbles) within the bed. These fluctuations can be measured by a sensitive press-
ure transducer, recorded and evaluated by means of statistical analysis (e.g., refs14,15).
The rising bubbles induce continuous motion of fluidized beds which are normally very
well mixed. Therefore, the fluidized bed reactor can often be viewed as a continuous
stirred tank reactor (CSTR) in which the concentration and temperature gradients are
negligible.

In some our works16,17, we proposed and verified useful models for sulfur dioxide
retention in an isothermal, fluidized bed reactor with sorption of SO2 by alkaline solid
sorbents. These include the conventional steady-state (constant feed flow rate) ap-
proach. To our best knowledge, a little has been done towards estimating and exploring
the performance of fluidized bed reactors with the fluctuating flow rate of feed in
which a non-catalytical gas–solid reaction occurs.
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Although the fluidized reactor operates at inherent unsteady state, its design and
control are still based on the average values of fluctuating operation quantities. In
general, the mean value of the performance of reactor operating at unsteady state will
not be the same as the steady-state performance at the mean values of the operation
variables. For general aspects of the stochastic modelling of various processes, a reader
is referred to the literature (e.g., refs18–23).

The use of average values to assess system performance may often be misleading.
For example, even though the average temperature can be acceptable, the transient
temperature fluctuations may reach values that can cause agglomeration of particles in
fluidized beds.

The aim of this work is to propose adequate computational tools which will make it
possible to monitor fluidized bed behaviour and reactor performance by simple means
as pressure/flow rate fluctuations.

THEORETICAL

Stationary State of Function

Function f(t) will be considered stationary for t > t0, if there exists such a quantity P
that the average of this function over the interval 〈t, t + P〉 (sliding average) does not
depend on the value of t (i.e., it is constant):

f(t)
___

 = 
1
P

 ∫ 
0

P

f(t + τ) dτ = const. (1)

If the function f(t) is periodic with the period P, then it is a stationary function. In this
work, we consider the function stationarity as equivalent to its periodicity.

Then, a stationary function has the following property: Consider the function f(t) and
let it be continuous and differentiable by parts on each interval 〈t, t + P〉. If we differen-
tiate Eq. (1) with respect to t, we obtain

(f(t)
___

)′ = 






1
P

 ∫ 
0

P

f(t + τ) dτ







′
 = 

1
P

 ∫ 
0

P

f ′(t + τ) dτ = f ′(t)
____

 = 
1
P

 [f(t + P) − f(t)] = 0  . (1a)

Analogously to the first derivative of a constant function, the average of the derivative
of stationary function over the period P is zero.
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Expected Value of Unsteady-State Function as the Average of τ-Realizations of
Differential Equation

A differential equation can be written in the general form

y′(t) = f(y(t), p(t)) (2)

with the initial condition

y(0) = y0 , (2a)

where p(t) = (p1(t),…, pk(t)) is the vector of periodic functions with the period P.
By the τ-realization of Eq. (2), it will be meant the solution of the differential equa-

tion

yτ′(t) = f(yτ(t), p(t + τ)) (3)

with the initial condition

yτ(0) = y0 , (3a)

where τ ∈ 〈0, P〉.
As the expected value y

_
(t) of solution of Eq. (3), we define the average of all τ-real-

izations over the period P, i.e., the value

y
_
(t) = 

1
P

 ∫yτ
0

P

(t) dτ  . (4)

By differentiating Eq. (4) with respect to t, we get

y
_
′(t) = 

1
P

 ∫yτ
0

P

′(t) dτ = y′(t)
____

  . (5)

As will be shown later, it can be helpful to combine Eqs (3) and (5) into the form
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y
_
′(t) = 

1
P

 ∫ 
0

P

f(yτ(t), p(t + τ)) dτ  . (6)

Let limt→∞ y
_
(t) exist. Then, the expected value of solution of Eq. (3) at steady state is

given as y
_

∞ = limt→∞ y
_
(t). This limit can be estimated with the aid of several techniques

as mentioned below.

Outline of Computational Techniques

Method 1
We perform a greater number of τ-realizations of differential equation (3) until the time
t0 which can be considered as an onset of stationarity. Upon averaging these results, we
obtain the expected value y

_
(t) of solution of Eq. (2). A certain problem is the estimate

of the point t0. It can be replaced, e.g., by a point which can already be considered as a
steady-state solution of Eq. (2). However, in this case, the vector p

_
 = (p

_
1,…, p

_
k) of

average (constant) values of functions pi(t) is inserted into Eq. (2) instead of the vector
p(t) = (p1(t),…, pk(t)). As an approximation of steady state of the expected value y

_
∞, we

consider then the value y
_
(t0). A drawback of such a procedure is usually a considerable

demand on computer time and memory. This method can be viewed as a Monte Carlo
method.

Method 2
We perform only one τ-realization of Eq. (2) to the time instant t0, when it is possible
to consider the solution stationary in the sense of Eq. (1). The estimation of the end
point t0 is carried out analogously to the preceding method. The average value of this
τ-realization on the interval t ∈ 〈t0, t0 + P〉 is then considered as an estimate of the
steady-state expected value y

_
∞. We assume that the results for other values τ ∈ 〈0, P〉

are identical.
Method 3

This method is analogous to the method of computing the steady states in case of the
differential equation with constant parameters.

For the differential equation y′(t) = f(y(t), p) with constant parameters p, we seek the
steady-state value y∞ of y(t) as a solution of the algebraic equation f(y∞, p) = 0, which
follows from the condition y′(t) = 0.

In case of the equation y′(t) = f(y(t), p(t)), we proceed in the following way.
Solution y(t) will be a stationary function if

y(t)
___

 = 
1
P

 ∫y(t
0

P

 + τ) dτ = const.  , (6a)
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i.e.,   
dy(t)

___

dt
 = 0 (6b)

for all t ∈ 〈0, ∞).
It also holds

dy(t)
___

dt
 = 

1
P

 ∫y
0

P

′(t + τ) dτ = [y(t + P) − y(t)] = 0  . (6c)

When we take t = 0 (the initial state), we get the relation y(P) = y(0). At the same time,
the function y(t) has to comply with Eq. (2).

As a stationary solution, we consider the function given by the solution of Eq. (2)
with the boundary condition

y(0) = y(P) . (7)

The average of solutions of Eqs (2) and (7) on the interval t ∈ 〈0, P〉 is taken for the
expected value of y

_
∞.

In practice, this problem leads to solving a system of algebraic equations. Equation
(2) can be approximated, e.g., by the Euler implicit difference scheme

y′(t) ≈ 
y(t + ∆t) − y(t)

∆t
 = f(y(t + ∆t), p(t + ∆t))  , (7a)

where ∆t = P/n and n is a chosen number of mesh points in the interval 〈0, P〉. We
denote

yi = y(i ∆t) ,     pi = p(i ∆t)     for   i = 1, 2,…, n − 1

and

y0 = y(0) ,     yn = y(P)  . (7b)

We obtain then a system of (n + 1) algebraic equations for the quantities y1, y2,…, yn

−yi + yi+1 = ∆t f(yi+1, pi+1)     for   i = 0, 2,…, n − 1
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and

y0 − yn = 0                        for   i = n  . (8)

After solving this system, we can define the expected value y
_

∞ as

y
_

∞ = 
1
n

 ∑ 
i=1

n

yi  . (8a)

In the preliminary work, all the three methods were thoroughly tested in different
situations. The above methods provide identical numerical results in terms of the ex-
pected values y

_
∞. Method 3 proved very effective for the estimation of y

_
∞ from the

standpoint of needed computer time and memory.

Model of Isothermal, Continuous, Ideally Mixed Reacting System

At constant flow rate of fluid v0, a simple model of the CSTR at unsteady state is
embodied in Eq. (9):

C′(t) = v0 (Cin − C(t)) − R(C(t))     for   t ∈ 〈0, ∞) (9)

with the initial condition

C(0) = C0 . (9a)

The concentration at steady state C∞ is given by the solution of the algebraic equa-
tion

v0 (Cin − C∞) − R(C∞) = 0  . (10)

When fluctuations of the flow rate of fluid occur, we can write

C′(t) = v(t) (Cin − C(t)) − R(C(t))     for   t ∈ 〈0, ∞) (11)

with the initial condition
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C(0) = C0. (11a)

We assume that v(t) is a periodic function with the period P and the average v0. It is,
therefore, a stationary function in the sense of definition given above.

The estimate of the expected steady-state value C
__

∞ can be obtained by any of the
methods mentioned above.

Effect of the Relation Between τc and τv on C
__

∞ at the Reactor Exit

Aside from the effect of amplitude of fluctuations, the behaviour of the solution of
Eq. (11) depends also on their wavelength τv (τv ≈ 1/f) and on the characteristic re-
sponse time of the reactor model τc. This quantity may be identified via linearization
of Eq. (11) and eigenvalue determination (τc = | 1/λc | ). Apparently, two limit situations
may be expected:

1) τv << τc. Due to its inertia, the solution of Eq. (11) does not follow the time
changes of fluctuations. It can be approximated by the solution of Eq. (9) with the
average (constant) flow rate v0. The expected value of this stationary state Ch will be
obtained by solving the algebraic equation v0 (Cin – Ch) – R(Ch) = 0.

2) τv >> τc. At any time t, it is possible to consider the process as (pseudo-)stable
with respect to the instantaneous flow rate v(t). For the expected value of stationary
state of this solution Cs, we can then write:

Cs = 
1
P

 ∫Cs
0

P

(t) dt  . (11b)

The values of function Cs(t) for each t ∈ 〈0, P〉 are given as the solutions of the alge-
braic equation

v(t) (Cin − Cs(t)) − R(Cs(t)) = 0  . (12)

In preliminary experiments, a number of model computations were performed with
the common reaction term R(C(t)) for simple simulated v(t) fluctuations as well as for
real (measured by experiment) pressure/flow rate fluctuations. Based on these results,
the relation

Cs ≤ C
__

∞ ≤ Ch (12a)
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can be viewed as a typical one. C
__

∞ approaches the lower limit Cs (decrease in concen-
tration of the reacted component is coming close to its maximum) for τv >> τc. On the
other hand, C

__
∞ can attain the upper limit Ch when τv << τc. This represents the perfor-

mance of reactor at the average (constant) flow rate v0.

Case with a Linear Reaction Term, Correlation Function z(t)

In case of a CSTR with a first-order reaction, it is possible to describe its performance
also in another way.

The model takes the form

C′(t) = v(t) (Cin − C(t)) − r C(t)  . (13)

By applying Eq. (6), we can obtain, for the expected value of solution C
__

(t), the dif-
ferential equation

dC
__

(t)
dt

 = 
1
P

 ∫Cin
0

P

 v(t + τ) − (r + v(t + τ)) Cτ(t) dτ  , (14)

where Cτ(t) is the τ-realization of Eq. (13) defined by relation (3).
By rearranging Eq. (14) we get

C
__

′(t) = Cin v0 − r C
__

(t) − 
1
P

 ∫v(t
0

P

 + τ) Cτ(t) dτ (14a)

and

C
__

′(t) = v0 (Cin − C
__

(t)) − r C
__

(t) − 
1
P

 ∫(v(t
0

P

 + τ) − v0) (Cτ(t) − C
__

(t)) dτ  . (15)

If we denote

z(t) = 
1
P

 ∫(v(t
0

P

 + τ) − v0) (Cτ(t) − C
__

(t)) dτ (16)

we can finally write

C
__

′(t) = v0 (Cin − C
__

(t)) − r C
__

(t) − z(t)  . (17)
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This differential equation gives the expected value of solution C
__

(t) of Eq. (13).
The function z(t) is a correlation function between the τ-realizations of functions

Cτ(t) and functions vτ(t) = v(t + τ), where τ ∈ 〈0, P〉. As can be seen, Eqs (13) and (17)
differ only in the term z(t). However, the function z(t) is not a priori known. It may be
feasible to evaluate it by means of higher moments between its derivatives and the
functions Cτ(t). The differential equation (17) can be used in certain considerations on
the behaviour of the expected value of solution, especially on its steady-state value C

__
∞.

In this case, the function z(t) has the following properties:

z(t) ≥ 0 (17a)

and converges to the null function (z(t) ≡ 0) for τv → 0.
From Eqs (17) and (17a), the relation C

__
∞ ≤ Ch follows, which is part of the above-

mentioned Eq. (12a).
A typical course of the correlation function z(t) is illustrated in Fig. 1. Different

situations with an isothermal CSTR and a fluidized bed reactor (FBR) are summarized
in Table I and explored below.

RESULTS

Example 1

Assuming the first-order reaction kinetics for the process of removal of a component
out of a fluid, we will estimate dynamic behaviour of the expected value C

__
(t) in the

sense of the mean value of τ-realizations given by Eq. (3).

TABLE I
Summary of computational examples

Example 
number

Subject of study
Method
number

Fluctuations of flow rate
of fluid

Reaction
kinetics

1 Constant vs fluctuating flow
rate; C

__
 (t) as a function of time

   1–3 simple oscillatory signal linear

2 Influence of wavelength 
(frequency) on C

__
∞

   3 simple oscillatory signal linear

3 Influence of ratio of amplitudes
of signals on C

__
∞

   3 composite signal of two 
different oscillations

linear

4 Application to fluidized bed 
reactor (FBR)

   3 real fluctuations measured 
at FBR in this work

non-linear
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The model equation has the form

Cτ′(t) = v(t + τ) (Cin − Cτ(t)) − r Cτ(t) (18)

with the initial condition

C(0) = C0 (18a)

for t ∈ 〈0, ∞) and τ ∈ 〈0, P〉.
The flow rate of fluid v(t) is assumed to be a periodic function of time with a period

P given by

v(t) = 
p0

p(t)  , (19)

where

p(t) = 1 + α sin (2π t/τv)  . (20)

We will compute τ-realizations of the solution with a sufficiently large number of
mesh points in the τ-interval 〈0, P〉 for t ∈ 〈0, tmax〉. With respect to the definition (4),

1.0

0.5

0.0
0

P = τv
t, s tmax = 5 . P

C
vol.%

FIG. 1
Expected value of C

__
(t) solution evaluated by the method of τ-realizations over the interval τ ∈ 〈0, P〉

and the correlation function z(t). ✧ Expected value C
__

(t), ❐ correlation function z(t), ▼ solution with
v(t) ≡ vmax, ■ solution with v(t) ≡ v0 (average), ▲ solution with v(t) ≡ vmin, + stationary state, ❐ Cs

minimum value (τv >> τc), × τ-realization for τ = 0

890 Trnka, Hartman:

Collect. Czech. Chem. Commun. (Vol. 63) (1998)



the expected value C(t) will be taken as the average value of all τ-realizations evaluated
at each point t.

The computations were performed for the values as follows: r = 1 s–1, v0 = 1 s–1, Cin = 1 vol.%,
P = τv, tmax = 5P, α = 0.9 kPa and τv = 0.5 s. The constant p0 was taken as large as p0 =
0.436 kPa s–1 for which v(t) = v0.

The computed results are plotted in Fig. 1. The courses of the expected value C(t)
and the correlation function z(t) defined by Eq. (16) are shown in this figure. The
results for the constant flow rates (v0 = l s–1, vmin = 0.225 s–1 and vmax = 4.36 s–1)
obtained by a simple τ-realization (τ = 0) are also presented. Furthermore, the station-
ary state, predicted by Method 3, and the expected value C

__
∞, deduced from it, can also

be seen. Finally, the lower bound Cs of evaluated as the mean value of Cs(t), defined
implicitly by Eq. (12), is shown as well.

The final result can be summarized by the following relation:

Cs = 0.390 vol.% < C
__

∞ = 0.446 vol.% < Ch = 0.500 vol.%.

It is evident that the expected value C
__

∞ in the stationary state (for the given τv) is
lower than that for the constant flow rate (Ch). Nevertheless, it is still higher than the
lower bound Cs corresponding to the oscillations with τv >> τc. As apparent, the size of
decrease in the respective concentrations Cs, C

__
∞ and Cs can be viewed as a measure of

the reactor performance.

Example 2

Using the same model of CSTR and the same values of its parameters (except for α) as
in Example 1, the effect of the wavelength/frequency of flow rate oscillations τv on the
reactor performance will be explored. In contrast to the above example, we will not
seek the expected solution of dynamic behaviour C

__
(t), but its steady-state value C

__
∞

evaluated as the average value of a single realization in the stationary state. The stationary
solution will be found by Method 3 as mentioned above. The computation will be
carried out for values of τv which are distributed in a wide range around the charac-
teristic response time τc of differential equation (13).

The bound values of expected steady state for α = 0.99 kPa are as large as

Cs = 0.249 vol.% < C
__

∞ < Ch = 0.5 vol.%.

The eigenvalue of Eq. (13) (λc), which is defined as the average value of the eigenvalues
λc(t) at each point t ∈ 〈0, P〉, has the value λc = –2 s–1 for λc(t) ∈ 〈–15.1 s–1, –1.07 s–1〉.
As the characteristic response time of the model, we take the quantity τc = | 1/λc | = 0.5 s.
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0.50

0.25

C
__

∞

τv = 0.2 s

τv = τc

τv = 2.0 s

0                   1                   2                   3                   4                   5
τv, s

e

FIG. 2
Effect of wavelength parameter τv on the expected value of stationary state C

__
∞ and stationary solution

C(t). Solutions for τv = 0.02 s (a), τv = 0.2 s (b), τ = 2.0 s (c) and τv = 10.0 s (d). Diagram e gives
the dependence of C

__
∞ on τv ∈ 〈0.01 s, 5.0 s〉. ▼ Solution with v(t) ≡ vmax, ■ solution with v(t) ≡ v0

(average), ▲ solution with v(t) ≡ vmin, + stationary state, ❐ Cs minimum value (τv >> τc), ● C
__

∞
expected value of stationary state, ❍ Cs(t) stationary state for τv >> τc

1.0

0.5

0.0
0 t, s tmax = 5 . P

P = τv

C
vol.%

c

1.0

0.5

0.0
0 t, s tmax = 5 . P

P = τv

C
vol.%

a
1.0

0.5

0.0
0 t, s tmax = 5 . P

P = τv

C
vol.%

b

1.0

0.5

0.0
0 t, s tmax = 5 . P

P = τv

C
vol.%

d

TABLE II
Dependence of the expected value C

__
∞ on the wavelength τv of fluctuation, Example 2

 τv, s 0.02 0.20 2.00 10.0

 C
__

∞, vol.%  0.499  0.466  0.266    0.250
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The values of C
__

∞, computed for several values of τv and shown in Table II, indicate
that the reactor performance is higher (decrease in C

__
∞ is deeper) when the wavelength

of flow rate oscillations is increased.
All the computed results are plotted in Figs 2a–2d. Solutions are also shown for v0,

vmin and vmax with the initial condition C(0) = Ch = 0.5 vol.% and the stationary state for
τv >> τc, the mean value of which gives the lower bound Cs. As can be seen in Fig. 2e,
the reactor performance (decrease in C

__
∞) is especially sensitive to the changes in wave-

length over the interval τv ∈ 〈0.1 s, 1 s〉.

Example 3

This example illustrates the behaviour of CSTR with two-component oscillations of the
flow rate. The respective simple oscillations differ in both frequencies and amplitudes.
The oscillations of the flow rate will be assumed in the form

v(t) = v0 (1 + α [β sin (2π t/τv) + (1 − β) sin (2π 10t/τv)])  , (21)

where β is the ratio of amplitudes of the respective oscillations. It is apparent from Eq. (21)
that the frequency of the second component is considered to be ten times higher than
that of the first component.

Similarly to Example 2, we will seek only the stationary state of solution and its
expected steady-state value C

__
∞. The differential equation

C ′(t) = v(t) (Cin − C(t)) − r C(t) (22)

with the initial condition

C(0) = C0 = 0.5  vol.% (22a)

was solved for

r = 1 s–1, v0 = 1 s–1, Cin = 1 vol.%, P = τv = 2 s, α = 0.9 kPa and β ∈ 〈0, 1〉. 

With the use of Method 3, the stationary solutions of Eq. (22) and their averages C
__

∞
were evaluated for different values of β. The results of these computations are shown
in Figs 3a–3f and in Table III.
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1.0

0.5

0.0
0 t, s tmax = 5 . P

P = τv

C
vol.%

c

1.0

0.5

0.0
0 t, s tmax = 5 . P

P = τv

C
vol.%

a
1.0

0.5

0.0
0 t, s tmax = 5 . P

P = τv

C
vol.%

b

1.0

0.5

0.0
0 t, s tmax = 5 . P

P = τv

C
vol.%

d

1.0

0.5

0.0
0 t, s tmax = 5 . P

P = τv

C
vol.%

e
1.0

0.5

0.0
0 t, s tmax = 5 . P

P = τv

C
vol.%

f

FIG. 3
Stationary state of solution C(t) and expected value C

__
∞ when the flow rate oscillations are composed

of two oscillatory components. The ratio of amplitudes β is gradually changed: 1.0 (a), 0.9 (b), 0.7
(c), 0.5 (d), 0.2 (e) and 0 (f). ▼ Solution with v(t) ≡ vmax, ■ solution with v(t) ≡ v0 (average), ▲
solution with v(t) ≡ vmin, + stationary state, ❐ Cs minimum value (τv >> τc), ● C

__
∞ expected value of

stationary state, ❍ Cs(t) stationary state for τv >> τc

TABLE III
Dependence of the values Cs, C

__
∞ and Ch (in vol.%) on the ratio β of amplitude in case of fluctuations

a two-component oscilations, Example 3

Parameter
β

1.0 0.9 0.7 0.5 0.2 0  

   Cs 0.425 0.440 0.459 0.464 0.451 0.425
   C

__
∞ 0.433 0.447 0.470 0.493 0.492 0.492

   Ch 0.5  0.5  0.5  0.5  0.5  0.5  

894 Trnka, Hartman:

Collect. Czech. Chem. Commun. (Vol. 63) (1998)



As can be seen from the obtained results, higher values of β lead to a better perfor-
mance of the reactor, i.e., to lower values of C

__
∞. The form of Eq. (21) suggests that the

contribution of the high frequency component decreases as the parameter β increases.
In contrast to Examples 1 and 2, the distribution of the flow rates v(t) around the mean
value is symmetrical in this Example.

Example 4

In contrast to Examples 1–3, the non-linear reaction kinetics and flow rate fluctuations
monitored in this work during the operation of a fluidized bed reactor are employed
below. Unsteady-state sorption of sulfur dioxide by magnesium oxide in a fluidized
bed16 can be described as

C′(t) = v0 (Cin − C(t)) − 
ts
tg

 Cin R(C,X)  , (23)

where

R(C,X) = X′(t) = 0.365 C0.873 (0.4 − X) (24)

and the initial conditions are C(0) = C0 = Cin = 0.33 vol.% and X(0) = 0.
The parameters t

_
g and ts are greatly different (0.23 s and 2 . 104 s, respectively),

which indicates that the time scales of the concentration changes in the gas and solid
phase are very different.

The constant flow rate v0 was replaced by the fluctuating function v(t) with the mean
value v0. An experimental sample was employed with 128 readings of v(t) measured in
a fluidized bed reactor during P = 19.2 s of its operation. The fluctuating flow rate v(t)
is shown in Fig. 4a. In this Example, v(t) fluctuated between vmin = 0.2 s–1 and vmax =
8.4 s–1 with v0 = 4.3 s–1. Since this period of time is short, the conversion of the solid
sorbent was assumed to be time independent and equal to X = 0.3.

Using Method 3, the stationary solution C(t) was found from which the expected
value C

__
∞ was deduced. The computed stationary state is shown in Fig. 4b.

To explore the effect of frequencies on C
__

∞, computations were also performed for P =
0.2 s, i.e., the frequencies of the fluctuating velocity v(t) were increased by a factor of
19.2/0.2 = 96. The results of the two computations are presented in Table IV.

As can be seen, the much higher frequencies of the flow rate fluctuations lead to a
higher value of C

__
∞, i.e. to somewhat lower performance of the fluidized bed reactor for

SO2 removal. This finding is consistent with the results in Examples 2 and 3 and is in
general agreement with the conclusions of other authors12.
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CONCLUSIONS

Three employed computational techniques provide practically identical results.
Methods 1 and 2 are more general, however, their applications usually need more com-
puter time. It should be noted that Method 1 makes it possible to estimate the expected
output quantity (i.e., C

__
∞) in the course of time.

Method 3 is simple and rapid. This procedure is particularly useful when τv and τc

differ in the order of magnitude.
We believe that these computational tools will also be useful in analyzing other sys-

tems with the fluctuating quantities.

TABLE IV
Values of Cs, C

__
∞ and Ch (in vol.%) at different frequencies, Example 4

P, s Cs C
__

∞ Ch

19.0 0.143 0.144 0.158

 0.2 0.143 0.153 0.158

FIG. 4
The solutions of Eqs (23) and (24) modelling the sulfur dioxide removal in a semi-continuous
fluidized bed reactor. Measured flow rate fluctuations, shown in diagram a, are employed. Diagram
b shows the stationary solution C(t) and the expected value C

__
∞ for the measured P = 19.2 s. Diagram

c depicts C(t) and C
__

∞ for P = 0.2 s. ▼ Solution with v(t) ≡ vmax, ■ solution with v(t) ≡ v0 (average),
▲ solution with v(t) ≡ vmin, + stationary state, ❐ Cs minimum value (τv >> τc), ● C

__
∞ expected value

of stationary state, ❍ Cs(t) stationary state for τv >> τc

2

1

0
0                  5                 10                 15                20

t, s

v(t), s–1

a

0.33

0.15

0.00
0 t, s tmax = 5 . P

P = 19.2 s

C
vol.%

b
0.33

0.15

0.00
0 t, s tmax = 5 . P

P = 0.2 s

C
vol.%

c
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It has been confirmed that the slow fluctuations of input flow rate with larger ampli-
tudes appear to be favourable for the performance of a reactor system.

SYMBOLS

C(t) concentration in reactor at time t, vol.%
C
__

(t) expected (average) concentration at time t, vol.%
Cin concentration at inlet of reactor, vol.%
Ch stationary state of concentration at constant flow rate v0, vol.%
Cs average value of Cs(t) on interval t ∈ 〈0, P〉, vol.%
Cs(t) pseudo-stationary state at time t ∈ 〈0, P〉, solution of equation

v(t) (Cin – Cs(t)) – R(Cs(t)) = 0, vol.%
Cτ(t) τ-realization of differential equation for fluctuating flow rate, vol.%
C0 initial concentration at time t = 0, vol.%
C∞ stationary state of concentration at constant flow rate v0, vol.%
C
__

∞ expected (average) value of function C
__

(t) at steady state, vol.%
f frequency of fluctuations, s–1

n number of mesh points in the interval 〈0, P〉
p0 constant in Eq. (19), kPa s–1

p(t) pressure as function of time, kPa
P period of periodic function, s
p vector of constants
p(t) vector of functions dependent on time
r reaction rate constant, s–1

R(C) reaction term, s–1

t time, s
tmax maximum time, s
tmin minimum time, s
t0 instant from which function is considered stationary in the sense of Eq. (1), s
t
_
g mean residence time of gas in fluidized bed, s

ts stoichiometric time for semi-continuous fluidized bed reactor (minimum period of time
needed for complete conversion of sorbent in the bed), s

v0 average (constant) flow rate of fluid, space velocity, s–1

v(t) instantaneous (fluctuating) flow rate of fluid, space velocity, s–1

vmax maximum flow rate of fluid, space velocity, s–1

vmin minimum flow rate of fluid, space velocity, s–1

X(t) conversion of solid sorbent at time t
y
_
(t) expected (average) value of τ-realizations of differential equation over interval τ ∈ 〈0, P〉

yτ(t) τ-realization of differential equation
y
_

∞ expected (average) value of steady state of function y
_
(t)

z(t) correlation function between flow rate v(t) and solution C(t) defined by Eq. (16), s–1

α amplitude of fluctuation signal, kPa
β ratio of amplitudes of oscillations in composite signal in Eq. (21)
λc eigenvalue of model equation, s–1

τ parameter of τ-realization of differential equation, s
τc characteristic response time, τc = | 1/λc | , s
τv wavelength of periodic sample of fluctuations, s
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