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Three simple computational techniques are proposed and employed to demonstrate the e
fluctuating flow rate of feed on the behaviour and performance of an isothermal, continuous !
tank reactor (CSTR). A fluidized bed reactor (FBR), in which a non-catalytic gas—solid rea
occurs, is also considered. The influence of amplitude and frequency of gas flow rate fluctuati
reactant concentrations at the exit of the CSTR is shown in four different situations.
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It has been known for two or three decades that intentional unsteady operat
chemical reactors can be superior to the conventional steady-state regime. The
tages sometimes provided by forced process cycling include increased conversic
hanced selectivity and reduced parameter sensitigity, fefs—9.

In contrast to the above-mentioned forced cycling, fluidized bed reactors e»
spontaneous oscillations,g, in terms of flow rate of gas. The pressure/flow rate flt
tuations are closely interrelated with the formation and motion of local inhomogen
(gas bubbles) within the bed. These fluctuations can be measured by a sensitive
ure transducer, recorded and evaluated by means of statistical analgsise{s*19.
The rising bubbles induce continuous motion of fluidized beds which are normally
well mixed. Therefore, the fluidized bed reactor can often be viewed as a conti
stirred tank reactor (CSTR) in which the concentration and temperature gradier
negligible.

In some our work$:1, we proposed and verified useful models for sulfur diox
retention in an isothermal, fluidized bed reactor with sorption of (Calkaline solid
sorbents. These include the conventional steady-state (constant feed flow rat
proach. To our best knowledge, a little has been done towards estimating and ex|
the performance of fluidized bed reactors with the fluctuating flow rate of fee
which a non-catalytical gas—solid reaction occurs.
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Although the fluidized reactor operates at inherent unsteady state, its desig
control are still based on the average values of fluctuating operation quantitie
general, the mean value of the performance of reactor operating at unsteady ste
not be the same as the steady-state performance at the mean values of the o
variables. For general aspects of the stochastic modelling of various processes, &
is referred to the literature g, refs®-23.

The use of average values to assess system performance may often be misl
For example, even though the average temperature can be acceptable, the t
temperature fluctuations may reach values that can cause agglomeration of part
fluidized beds.

The aim of this work is to propose adequate computational tools which will ma
possible to monitor fluidized bed behaviour and reactor performance by simple n
as pressure/flow rate fluctuations.

THEORETICAL

Stationary State of Function

Functionf(t) will be consideredstationaryfor t > t,, if there exists such a quanti®y
that the average of this function over the intef#ial + PO(sliding average) does no
depend on the value ofi.e., it is constant):

P
F(E:%jf(t+r)dr:const. 0
0

If the functionf(t) is periodic with the perio®, then it is a stationary function. In thi
work, we consider the function stationarity as equivalent to its periodicity.

Then, a stationary function has the following property: Consider the furf¢tjaand
let it be continuous and differentiable by parts on each intéivat P If we differen-
tiate Eq. () with respect td, we obtain

P P
(f—(a)’:%{f(t+'[)d'[ :;‘!)'f’(t+r)dT:f_'_(6:;[f(t+P)—f(t)]:0. @a)

Analogously to the first derivative of a constant function, the average of the deriv
of stationary function over the peri®lis zero.
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Expected Value of Unsteady-State Function as the Averag&edlizations of
Differential Equation

A differential equation can be written in the general form

y (1) = f(y(1), p(H) )

with the initial condition

¥(0) =Yo, (29)

wherep(t) = (p4(t),..., p(t)) is the vector of periodic functions with the peried
By thet-realizationof Eq. @), it will be meant the solution of the differential equ
tion

y¢' (®) =y (1), p(t + 1)) (3)
with the initial condition
¥:(0) =Yo., (3a)

wheret O [0, PO
As theexpectedvaluey(t) of solution of Eq. §), we define the average of alreal-
izations over the perioB, i.e., the value

P
0 = = ) i @
0

By differentiating Eq. 4) with respect td, we get

P
YO = [y ® dr=y(© . ©
0

As will be shown later, it can be helpful to combine Egjsand 6) into the form
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P
Y0 =2 [ 1040, P+ 1) o . ©
0

Let lim,_,, y(t) exist. Then, thexpected valuef solution of Eq. §) at steady statés
given asy,, = lim,_,, y(t). This limit can be estimated with the aid of several techniq
as mentioned below.

Outline of Computational Techniques

Method 1
We perform a greater numberwfealizations of differential equatioB)(until the time
towhich can be considered as an onset of stationarity. Upon averaging these rest
obtain the expected valygt) of solution of Eq. Z). A certain problem is the estimat
of the pointt,. It can be replacea,.g, by a point which can already be considered a
steady-state solution of Eq2)( However, in this case, the vector= (p,,..., py) of
average (constant) values of functign@) is inserted into Eq.2} instead of the vector
p(t) = E4(1),.-., p(t)). As an approximation of steady state of the expected yag|uge
consider then the valugt,). A drawback of such a procedure is usually a consider:
demand on computer time and memory. This method can be viewed as a Monte
method.

Method 2
We perform only one-realization of Eq. ) to the time instant,, when it is possible
to consider the solution stationary in the sense of Bq.The estimation of the enc
point t, is carried out analogously to the preceding method. The average value ¢
T-realization on the interval O [, t, + PUis then considered as an estimate of 1
steady-state expected valye We assume that the results for other valuésk, PO
are identical.

Method 3
This method is analogous to the method of computing the steady states in case
differential equation with constant parameters.

For the differential equatioyi(t) = f(y(t), p) with constant parameteps we seek the
steady-state valug, of y(t) as a solution of the algebraic equati¢n,, p) = 0, which
follows from the conditiory'(t) = 0.

In case of the equatioyi(t) = f(y(t), p(t)), we proceed in the following way.

Solutiony(t) will be a stationary function if

P
y(t) = %J'y(t +7) dt = const. , 6a)
0
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ie, M _g ©b)

for all t O [0, o).
It also holds

P
%:%J’y'(t+ﬂdT=[y(t+P)‘Y(t)]:0 : 60)
0

When we take = 0 (the initial state), we get the relatigi®) = y(0). At the same time,
the functiony(t) has to comply with Eq2j.

As a stationary solution, we consider the function given by the solution of2Ec
with the boundarycondition

y(0) =y(P) . )

The average of solutions of Eq®) @nd {) on the intervat O [0, POis taken for the
expected value of,.

In practice, this problem leads to solving a system of algebraic equations. Eqt
(2) can be approximatee,g, by the Euler implicit difference scheme

y() =AY < gy e, pie+ ) 7

whereAt = P/n andn is a chosen number of mesh points in the inte®aPL We
denote

yi=y(iAt), p=pia) fori=1,2,..,n-1
and

Yo=Y(0), Ya=¥(P) . (7b)
We obtain then a system af ¢ 1) algebraic equations for the quantitygsys,..., ¥,

Vi + Vi = A (Vg pig)  for i=0,2,..,n-1
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and

Yo—¥,=0 fori=n . 8)
After solving this system, we can define the expected wa|uses
n
Vo=t v ©a)
con i=1 I

In the preliminary work, all the three methods were thoroughly tested in diffe
situations. The above methods provide identical humerical results in terms of tf
pected valuey,. Method 3 proved very effective for the estimationygffrom the
standpoint of needed computer time and memory.

Model of Isothermal, Continuous, Ideally Mixed Reacting System

At constant flow rate of fluidy, a simple model of the CSTR at unsteady state
embodied in Eq.9):

Ct)=v (C, - C(t)) - R(C(t)) for tO[D,c0) 9
with the initial condition
C(0) =C,. (93

The concentration at steady st&lg is given by the solution of the algebraic equ
tion

Vo (G - C.) —R(C,.) =0 . @o
When fluctuations of the flow rate of fluid occur, we can write
C'(t) =v(t) (C, —C(t)) - R(C(t)) for tO [0, ) (11

with the initial condition
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C(0) =C,. (113

We assume thaf(t) is a periodic function with the periddand the average,. It is,
therefore, a stationary function in the sense of definition given above.

The estimate of the expected steady-state v@luean be obtained by any of th
methods mentioned above.

Effect of the Relation Betweepand 1y onz‘oo at the Reactor Exit

Aside from the effect of amplitude of fluctuations, the behaviour of the solutio
Eq. 1) depends also on their wavelength(t, = 1) and on the characteristic re
sponse time of the reactor model This quantity may be identifieda linearization
of Eq. 1) and eigenvalue determination, € | 1A; | ). Apparently, two limit situations
may be expected:

1) 1, << 1. Due to its inertia, the solution of EdLl] does not follow the time
changes of fluctuations. It can be approximated by the solution of %¥quith the
average (constant) flow ratg. The expected value of this stationary statevill be
obtained by solving the algebraic equatigitC,,— C,) — R(C,) = 0.

2) 1, >> 1. At any timet, it is possible to consider the process as (pseudo-)st
with respect to the instantaneous flow rafg. For the expected value of stationa
state of this solutioil©,, we can then write:

P
-1
C.= P_!)'Cs(t) dt . (11b)

The values of functiol€(t) for eacht O [0, POare given as the solutions of the alg
braic equation

v(t) (Cin — C) ~RICLD) =0 . 12

In preliminary experiments, a number of model computations were performed
the common reaction teriR(C(t)) for simple simulated/(t) fluctuations as well as for
real (measured by experiment) pressure/flow rate fluctuations. Based on these 1
the relation

C.<C,<C, (12a)
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can be viewed as a typical or, approaches the lower lim@, (decrease in concen
tration of the reacted component is coming close to its maximum), for 1. On the
other handC,, can attain the upper lim&, whent, << 1.. This represents the perfol
mance of reactor at the average (constant) flowvate

Case with a Linear Reaction Term, Correlation Function z(t)

In case of a CSTR with a first-order reaction, it is possible to describe its perforn
also in another way.
The model takes the form

C'(® =v(®) (Cn-CH) -1 CO . (€3S)

By applying Eg. §), we can obtain, for the expected value of solut—BQlj, the dif-
ferential equation

— P

whereC,(t) is thet-realization of Eq.13) defined by relation3).
By rearranging Eq.14) we get

P
C)=Cin Vo= C) — 1 Wt +7) C,(0) (149
0
and
C)=vo(Cn=CH) - CH -5 Jit+1) - vo) (C(t) - Cv) ot . 15
0
If we denote
1" —
=5 Jut+1) - vo) (Ci(t) - C() dir (16)
0
we can finally write
C'(t) =g (Cip = C(1)) — 1 C(t) - (1) . an
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This differential equation gives the expected value of sol@ighof Eq. (L3).

The functionz(t) is a correlation function between theealizations of functions
C,(t) and functions/ (t) = v(t + 1), wheret O [0, P As can be seen, Eqs3) and (7)
differ only in the terng(t). However, the functior(t) is nota priori known. It may be
feasible to evaluate it by means of higher moments between its derivatives at
functionsC.(t). The differential equationl{) can be used in certain considerations
the behaviour of the expected value of solution, especially on its steady-stat€yal

In this case, the functior(t) has the following properties:

)20 17a

and converges to the null functior(tf = 0) fort, - O.

From Egs {7) and (L7a), the relationC, < C,, follows, which is part of the above
mentioned Eq.123).

A typical course of the correlation functiat(t) is illustrated in Fig. 1. Different
situations with an isothermal CSTR and a fluidized bed reactor (FBR) are summ:
in Table | and explored below.

RESULTS

Example 1

Assuming the first-order reaction kinetics for the process of removal of a comp
out of a fluid, we will estimate dynamic behaviour of the expected v@{fein the
sense of the mean value Bfealizations given by Eq3J.

TaBLE |
Summary of computational examples

Example . Method Fluctuations of flow rate Reaction
Subject of study . oo
number number of fluid kinetics
1 Constants fluctuating flow 1-3 simple oscillatory signal linear
rate;C (t) as a function of time
2 Influence of wavelength 3 simple oscillatory signal linear
(frequency) orCe
3 Influence of ratio of amplitudes 3 composite signal of two linear
of signals orCe different oscillations
4 Application to fluidized bed 3 real fluctuations measured non-linear
reactor (FBR) at FBR in this work
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The model equation has the form

C/' () =t +1) (Cp — Co(1)) — 1 C(D) (18)

with the initial condition

C(0) =G, (189

for t O [0, ) andt O [0, PO
The flow rate of fluidv(t) is assumed to be a periodic function of time with a per
P given by

v(t) = @ 19

where

p(t) =1+a sin(2mt/t,) . (20

We will computet-realizations of the solution with a sufficiently large number
mesh points in the-interval [0, PCfor t O [0, t,,,,,[] With respect to the definitior#),

1.0 T T

C
vol.%

N /\A

0.0 1 1 1 1
0 ~ e

tnax =5 P
Fic. 1 _

Expected value of(t) solution evaluated by the method wfealizations over the intervalO [0, PO

and the correlation function(t). 0 Expected valu€C(t), O correlation functiorg(t), ¥ solution with

V(t) = Vpaxe ® solution withv(t) = v, (average),A solution withv(t) = v,,,, + stationary statel] Cg

minimum value €, >> 1), x T-realization fort = 0

Collect. Czech. Chem. Commun. (Vol. 63) (1998)



On the Influence of Fluctuating Flow Rate 891

the expected valug(t) will be taken as the average value oftalealizations evaluatec
at each point.

The computations were performed for the values as followd: s?, v,= 1 s, C,,= 1 vol.%,
P =1, tha= 5P,a = 0.9 kPa and, = 0.5 s. The constamtwas taken as large ag=
0.436 kPa g for whichv(t) = v,

The computed results are plotted in Fig. 1. The courses of the expectedC{alu
and the correlation function(t) defined by Eqg. 16) are shown in this figure. The
results for the constant flow rateg, & | s, v,,;, = 0.225 st and v,,,, = 4.36 s9
obtained by a simple-realization ¢ = 0) are also presented. Furthermore, the stati
ary state, predicted by Method 3, and the expected ¥&ludeduced from it, can alsc
be seen. Finally, the lower boul@] of evaluated as the mean valueQ(t), defined
implicitly by Eqg. (2), is shown as well.

The final result can be summarized by the following relation:

C,=0.390 vol.% <C_, = 0.446 vol.% <C,,= 0.500 vol.%.

It is evident that the expected valag in the stationary state (for the givey) is
lower than that for the constant flow ratg.,). Nevertheless, it is still higher than th
lower boundC;corresponding to the oscillations with>> 1.. As apparent, the size o
decrease in the respective concentrationsC,, andC,can be viewed as a measure
the reactor performance.

Example 2

Using the same model of CSTR and the same values of its parameters (exagtsfc
in Example 1, the effect of the wavelength/frequency of flow rate oscillatioors the
reactor performance will be explored. In contrast to the above example, we wil
seek the expected solution of dynamic behavio(ij, but its steady-state valu@,
evaluated as the average value of a single realization in the stationary state. The st:
solution will be found by Method 3 as mentioned above. The computation wil
carried out for values af, which are distributed in a wide range around the chau
teristic response time, of differential equationi(3).
The bound values of expected steady statefer0.99 kPa are as large as

C.= 0.249 vol.% <C, < C,= 0.5 vol.%.

The eigenvalue of Eq18) (A,), which is defined as the average value of the eigenva
A(t) at each point 00 [0, P[] has the valua,= -2 stfor A(t) O 3-15.1 s?, —1.07 s
As the characteristic response time of the model, we take the quarntipih.| = 0.5 s.
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TasLE Il

Dependence of the expected valDe on the wavelength, of fluctuation, Example 2

Ty, S 0.02 0.20 2.00 10.0
C., vol.% 0.499 0.466 0.266 0.250
a
1.0 — - - 1.0 — - -
vol.% vol.%
0.0 0.0 - = |
0 N - ts  lmax=5.P
P=1,
1.0 = . = = . = = 1.0 - - - —
C C
vol.% vol.%
I I 1
k \_/ J { WA J I
0.0 S S = C— 0.0 A = 1
° - ts fmax=5-P 0 S~ s tmax=5-P
P=1, P=1,
e
0.50 T T
_ T, =02s
COO
0.25 !
0 4 5
Ty, S
Fic. 2

Effect of wavelength parametejon the expected value of stationary st@jeand stationary solution
C(t). Solutions fort, = 0.02 s &), 1,= 0.2 s b), T = 2.0 s ¢) andt, = 10.0 s ¢). Diagrame gives
the dependence @, ont, O [0.01 s, 5.0 § ¥ Solution withv(t) = v, ® solution withv(t) = v,
(average),a solution withv(t) = v,,, + stationary statel] C; minimum value ¢, >> 1), ® C,
expected value of stationary stafe,C(t) stationary state for, >> 1,
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The values ofC,, computed for several values gfand shown in Table Il, indicate
that the reactor performance is higher (decreasg,irs deeper) when the wavelengt
of flow rate oscillations is increased.

All the computed results are plotted in Figs 2a—2d. Solutions are also show 1
Vimin @Ndv, . With the initial conditionC(0) = C,,= 0.5 vol.% and the stationary state f
1, >> 1, the mean value of which gives the lower bodAs can be seen in Fig. 2¢
the reactor performance (decreas€j) is especially sensitive to the changes in wa
length over the interval, 0 (0.1 s, 1 §

Example 3

This example illustrates the behaviour of CSTR with two-component oscillations c
flow rate. The respective simple oscillations differ in both frequencies and amplitt
The oscillations of the flow rate will be assumed in the form

V(t) =V (1 +a [B sin(2rtt/t,) + (1 - B) sin(2t1d/t)]) 21

wheref} is the ratio of amplitudes of the respective oscillations. It is apparent frorallEq
that the frequency of the second component is considered to be ten times highe
that of the first component.

Similarly to Example 2, we will seek only the stationary state of solution anc
expected steady-state valGg. The differential equation

C'(t) =v(t) (G, - C(t)) —r C(t) (22
with the initial condition
C(0)=Cy=0.5 vol.% @29

was solved for
r=1s%v,=1s%C,=1vo0l.%,P=1,=2s,a0 =0.9 kPa an@ (J [0, 1]

With the use of Method 3, the stationary solutions of 2§) énd their averageéw
were evaluated for different values [&f The results of these computations are sho
in Figs 3a—3f and in Table Il
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TasLE Il
Dependence of the valu€s, C,, andC;, (in vol.%) on the rati@ of amplitude in case of fluctuation:

a two-component oscilations, Example 3

B
Parameter
1.0 0.9 0.7 0.5 0.2 0
ES 0.425 0.440 0.459 0.464 0.451 0.425
Coo 0.433 0.447 0.470 0.493 0.492 0.492
Gy 0.5 0.5 0.5 0.5 0.5 0.5
a b
1.0 1.0
c c
vol.% . vol.%

LV VY

0.0
0 N~ ts  tnax=5.P 0 ~ t's  tnax=5-P
P=1, P=1,
d
Cc

1.0 ; : \ \ 1.0

c c
vol.% . vol.% .

0.5 i .N ] ‘A/\N\j\; M” - 0.5 [

0050 ~ ts  tpax=5.P "o
P=1,
10 —— : : : o
) Cl 0
vol.% > > > > - vol.% - - - - -
s il {QU’ vw,un i W O ——
%0 e ts  fmax=5.P " e LS fmax=5.P
Fic. 3 ’ ’

Stationary state of solutio@(t) and expected valué,, when the flow rate oscillations are COMPOSE
of two oscillatory components. The ratio of amplitudess gradually changed: 1.@&), 0.9 ), 0.7
(c), 0.5 @), 0.2 ) and 0 f). v Solution withv(t) = vj,,, ® solution withv(t) = v, (average),A

solution withv(t) = v, + Stationary statel] C; minimum value ¢, >> 1), ® C, expected value of
stationary state[] C(t) stationary state for, >> 1.
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As can be seen from the obtained results, higher valuBdesid to a better perfor:
mance of the reactor.g., to lower values o€_. The form of Eq.21) suggests that the
contribution of the high frequency component decreases as the parfnieteeases.
In contrast to Examples 1 and 2, the distribution of the flow rgtesround the mean
value is symmetrical in this Example.

Example 4

In contrast to Examples 1-3, the non-linear reaction kinetics and flow rate fluctue
monitored in this work during the operation of a fluidized bed reactor are empl
below. Unsteady-state sorption of sulfur dioxide by magnesium oxide in a fluic
bed®can be described as

C') = Vo (= CO) - £ Gy RCX) | 3
g
where
R(C,X) = X (t) = 0.365C°873(0.4— X) (24)

and the initial conditions arg(0) = C,= C;, = 0.33 vol.% and(0) = 0.

The parameter§g andt, are greatly different (0.23 s and 2 .*H) respectively),
which indicates that the time scales of the concentration changes in the gas an
phase are very different.

The constant flow rate, was replaced by the fluctuating functiwet) with the mean
valuev,. An experimental sample was employed with 128 reading&)omeasured in
a fluidized bed reactor during = 19.2 s of its operation. The fluctuating flow raf®
is shown in Fig. 4a. In this Example() fluctuated between,,, = 0.2 standv,,, =
8.4 stwith v, = 4.3 sL. Since this period of time is short, the conversion of the s
sorbent was assumed to be time independent and egXiat t3.

Using Method 3, the stationary soluti@{t) was found from which the expecte
valueC,, was deduced. The computed stationary state is shown in Fig. 4b.

To explore the effect of frequencies Gy, computations were also performed o=
0.2 s,i.e, the frequencies of the fluctuating velocityf) were increased by a factor c
19.2/0.2 = 96. The results of the two computations are presented in Table IV.

As can be seen, the much higher frequencies of the flow rate fluctuations lea
higher value ofC_, i.e. to somewhat lower performance of the fluidized bed reactor
SO, removal. This finding is consistent with the results in Examples 2 and 3 and
general agreement with the conclusions of other authors
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CONCLUSIONS

Three employed computational techniques provide practically identical res
Methods 1 and 2 are more general, however, their applications usually need mor
puter time. It should be noted that Method 1 makes it possible to estimate the ex|
output quantityi(e., C,) in the course of time.

Method 3 is simple and rapid. This procedure is particularly useful whandt,
differ in the order of magnitude.

We believe that these computational tools will also be useful in analyzing othe
tems with the fluctuating quantities.

TasLE IV

Values ofC,, C,, andC,, (in vol.%) at different frequencies, Example 4

P, s C Co Ci
19.0 0.143 0.144 0.158
0.2 0.143 0.153 0.158

=

SN T T TRTINT
U7y

t, s
b c
0.33 i T i i 0.33
C C
vol.% vol.% . .

0.15 f 1 3

0.00 \\

0.15

0.00

0 B s
P=192s P=02s

FG. 4
The solutions of Eqs2@) and @4) modelling the sulfur dioxide removal in a semi-continuol
fluidized bed reactor. Measured flow rate fluctuations, shown in diagraame employed. Diagram
b shows the stationary soluti@(t) and the expected valu®, for the measure® = 19.2 s. Diagram
¢ depictsC(t) andC, for P = 0.2 s. v Solution withv(t) = v, ® solution withv(t) = v, (average),
A solution withv(t) = v, + Stationary statel] C; minimum value ¢, >> 1.), ® C, expected value
of stationary statel]l Cg(t) stationary state for, >> 1.
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It has been confirmed that the slow fluctuations of input flow rate with larger an
tudes appear to be favourable for the performance of a reactor system.

SYMBOLS
C(t) concentration in reactor at timgvol.%
C(t) expected (average) concentration at tipneol.%
Cin concentration at inlet of reactor, vol.%
Ch stationary state of concentration at constant flow vgteol.%
Cs average value o€(t) on intervalt O [0, P( vol.%
Cs(t) pseudo-stationary state at timg [0, P[) solution of equation
V(t) (Cin — Cs(t)) —R(C4t)) = 0, vol.%
Ci(t) t-realization of differential equation for fluctuating flow rate, vol.%
Co initial concentration at timée= 0, vol.%
Co stationary state of concentration at constant flow vgteol.%
Cw expected (average) value of functioft) at steady state, vol.%
f frequency of fluctuations; %
n number of mesh points in the inteni| PO
Po constant in Eq.19), kPa st
p(t) pressure as function of time, kPa
P period of periodic function, s
p vector of constants
p(t) vector of functions dependent on time
r reaction rate constant;'s
R(C) reaction term, 3
t time, s
tmax maximum time, s
tmin minimum time, s
to instant from which function is considered stationary in the sense oflEa. (
g mean residence time of gas in fluidized bed, s
ts stoichiometric time for semi-continuous fluidized bed reactor (minimum period of 1
needed for complete conversion of sorbent in the bed), s
Vo average (constant) flow rate of fluid, space velocity, s
v(t) instantaneous (fluctuating) flow rate of fluid, space velocity, s
Vmax maximum flow rate of fluid, space velocity;'s
Vimin minimum flow rate of fluid, space velocity;’s
X(t) conversion of solid sorbent at tirhe
y(t) expected (average) value wfealizations of differential equation over intervdl [0, PO
yi(t) T-realization of differential equation
Yoo expected (average) value of steady state of fung(ipn
z(t) correlation function between flow rawt) and solutionC(t) defined by Eq.6), s*
a amplitude of fluctuation signal, kPa
B ratio of amplitudes of oscillations in composite signal in 24) (
Ac eigenvalue of model equatiortts
T parameter of-realization of differential equation, s
Tc characteristic response time,= | 1A¢|, s
Ty wavelength of periodic sample of fluctuations, s
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